VLTimeCausality - Variable-Lag Time Series Causality Inference Framework
A framework to infer causality on a pair of time series of real numbers based on variable-lag Granger causality and transfer entropy. Typically, Granger causality and transfer entropy have an assumption of a fixed and constant time delay between the cause and effect. However, for a non-stationary time series, this assumption is not true. For example, considering two time series of velocity of person A and person B where B follows A. At some time, B stops tying his shoes, then running to catch up A. The fixed-lag assumption is not true in this case. We propose a framework that allows variable-lags between cause and effect in Granger causality and transfer entropy to allow them to deal with variable-lag non-stationary time series. Please see Chainarong Amornbunchornvej, Elena Zheleva, and Tanya Berger-Wolf (2021) <doi:10.1145/3441452> when referring to this package in publications.
Last updated 9 months ago
causal-inferencegranger-causalitytime-seriestime-series-analysistransfer-entropy
5.78 score 55 stars 11 scripts 284 downloadsMRReg - MDL Multiresolution Linear Regression Framework
We provide the framework to analyze multiresolution partitions (e.g. country, provinces, subdistrict) where each individual data point belongs to only one partition in each layer (e.g. i belongs to subdistrict A, province P, and country Q). We assume that a partition in a higher layer subsumes lower-layer partitions (e.g. a nation is at the 1st layer subsumes all provinces at the 2nd layer). Given N individuals that have a pair of real values (x,y) that generated from independent variable X and dependent variable Y. Each individual i belongs to one partition per layer. Our goal is to find which partitions at which highest level that all individuals in the these partitions share the same linear model Y=f(X) where f is a linear function. The framework deploys the Minimum Description Length principle (MDL) to infer solutions. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2021) <doi:10.1145/3424670>.
Last updated 3 years ago
data-scienceminimum-description-lengthmultiresolutionregression-analysis
4.00 score 2 stars 8 scripts 203 downloadsEDOIF - Empirical Distribution Ordering Inference Framework (EDOIF)
A non-parametric framework based on estimation statistics principle. Its main purpose is to infer orders of empirical distributions from different categories based on a probability of finding a value in one distribution that is greater than an expectation of another distribution. Given a set of ordered-pair of real-category values the framework is capable of 1) inferring orders of domination of categories and representing orders in the form of a graph; 2) estimating magnitude of difference between a pair of categories in forms of mean-difference confidence intervals; and 3) visualizing domination orders and magnitudes of difference of categories. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2020) <doi:10.1016/j.heliyon.2020.e05435>.
Last updated 4 years ago
bootstrapping-statisticsdata-scienceestimation-statisticsnonparametric-framework
3.70 score 1 stars 4 scripts 268 downloadsBiCausality - Binary Causality Inference Framework
A framework to infer causality on binary data using techniques in frequent pattern mining and estimation statistics. Given a set of individual vectors S={x} where x(i) is a realization value of binary variable i, the framework infers empirical causal relations of binary variables i,j from S in a form of causal graph G=(V,E) where V is a set of nodes representing binary variables and there is an edge from i to j in E if the variable i causes j. The framework determines dependency among variables as well as analyzing confounding factors before deciding whether i causes j. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2023) <doi:10.1016/j.heliyon.2023.e15947>.
Last updated 1 years ago
binary-variablecausal-inferenceestimation-statisticsexploratory-data-analysisfrequent-pattern-mining
3.00 score 2 stars 4 scripts 294 downloads