Package: BiCausality 0.1.4
BiCausality: Binary Causality Inference Framework
A framework to infer causality on binary data using techniques in frequent pattern mining and estimation statistics. Given a set of individual vectors S={x} where x(i) is a realization value of binary variable i, the framework infers empirical causal relations of binary variables i,j from S in a form of causal graph G=(V,E) where V is a set of nodes representing binary variables and there is an edge from i to j in E if the variable i causes j. The framework determines dependency among variables as well as analyzing confounding factors before deciding whether i causes j. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2023) <doi:10.1016/j.heliyon.2023.e15947>.
Authors:
BiCausality_0.1.4.tar.gz
BiCausality_0.1.4.zip(r-4.5)BiCausality_0.1.4.zip(r-4.4)BiCausality_0.1.4.zip(r-4.3)
BiCausality_0.1.4.tgz(r-4.4-any)BiCausality_0.1.4.tgz(r-4.3-any)
BiCausality_0.1.4.tar.gz(r-4.5-noble)BiCausality_0.1.4.tar.gz(r-4.4-noble)
BiCausality_0.1.4.tgz(r-4.4-emscripten)BiCausality_0.1.4.tgz(r-4.3-emscripten)
BiCausality.pdf |BiCausality.html✨
BiCausality/json (API)
NEWS
# Install 'BiCausality' in R: |
install.packages('BiCausality', repos = c('https://darkeyes.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/darkeyes/bicausality/issues
binary-variablecausal-inferenceestimation-statisticsexploratory-data-analysisfrequent-pattern-mining
Last updated 12 months agofrom:3a88426a3f. Checks:OK: 2 WARNING: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | WARNING | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
R-4.4-win | WARNING | Nov 05 2024 |
R-4.4-mac | WARNING | Nov 05 2024 |
R-4.3-win | WARNING | Nov 05 2024 |
R-4.3-mac | WARNING | Nov 05 2024 |
Exports:adjustmentProbassocSignTestbin2decbIndpTestbSCMCausalGraphFuncbSCMdeConfoundingGraphFuncbSCMDepndentGraphFastFuncbSCMDepndentGraphFuncCausalGraphInferMainFunccomparePredAdjMatrix2TrueAdjMatCondProbconfNetFuncgetReachableNodesgetTransitiveClosureMatindpFuncnum2BitsoddDiffFuncoddRatioFuncsuppVecAlignment
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
adjustmentProb function | adjustmentProb |
indpFunc function | assocSignTest |
bin2dec function | bin2dec |
bIndpTest function | bIndpTest |
bSCMCausalGraphFunc function | bSCMCausalGraphFunc |
bSCMdeConfoundingGraphFunc function | bSCMdeConfoundingGraphFunc |
bSCMDepndentGraphFastFunc function | bSCMDepndentGraphFastFunc |
bSCMDepndentGraphFunc function | bSCMDepndentGraphFunc |
CausalGraphInferMainFunc function | CausalGraphInferMainFunc |
comparePredAdjMatrix2TrueAdjMat | comparePredAdjMatrix2TrueAdjMat |
CondProb function | CondProb |
confNetFunc function | confNetFunc |
An example of aligned list of transactions | D |
getReachableNodes function | getReachableNodes |
getTransitiveClosureMat function | getTransitiveClosureMat |
indpFunc function | indpFunc |
A simulation dataset | mat |
num2Bits function | num2Bits |
oddDiffFunc function | oddDiffFunc |
oddRatioFunc function | oddRatioFunc |
An example of causal inference result | resC |
supp function | supp |
VecAlignment function | VecAlignment |